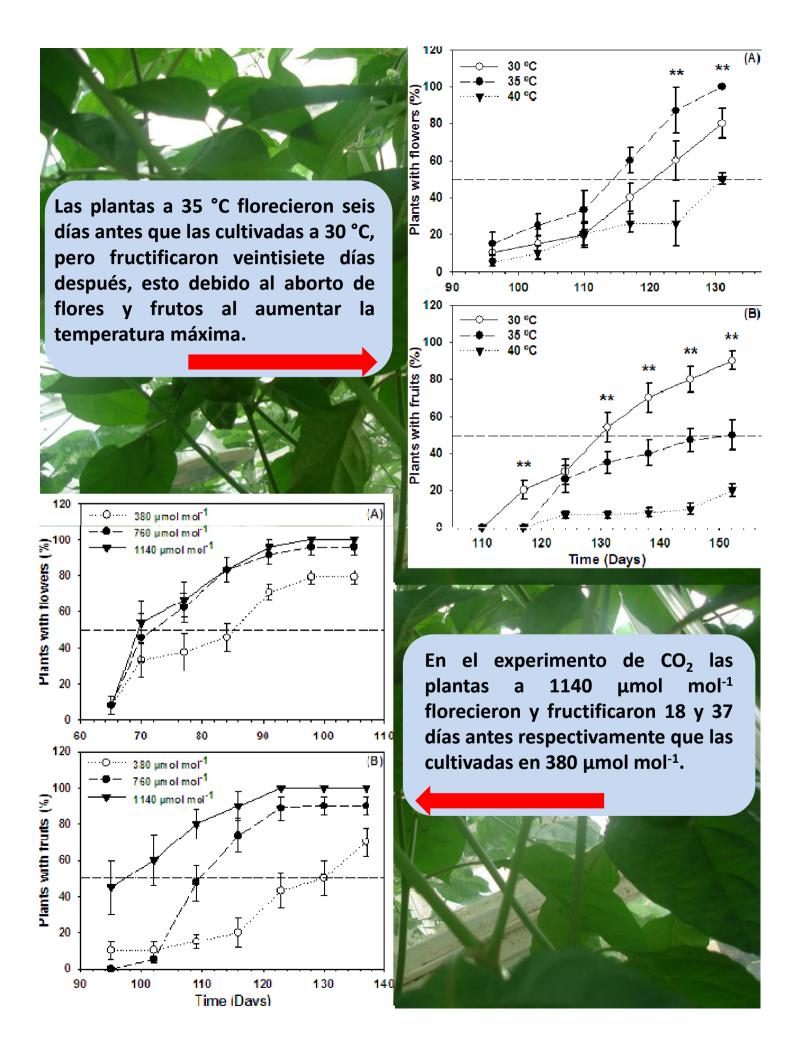
Efecto del aumento de la temperatura y el CO₂ como consecuencia del cambio climático sobre el cultivo de chile habanero

René Garruña Hernández, Roger Orellana Lanza, Azucena Canto Aquilar

Ante un inminente incremento en la concentración atmosférica de CO₂ y un aumento en la temperatura ambiental, se evaluó la respuesta biológica de un importante cultivo tropical en futuros escenarios de cambio climático.

Usando tres cámaras de crecimiento ubicadas dentro de un invernadero, se realizaron dos experimentos para conocer las respuestas fisiológicas, fenológicas, el crecimiento vegetal y la calidad de los frutos en plantas de chile Habanero (*Capsicum chinense* Jacq.) ante tres temperaturas máximas diurnas y tres concentraciones atmosféricas de CO₂.


En el experimento 1, diferentes temperaturas máximas diurnas (30, 35 y 40 °C) fueron establecidas en cada cámara.

En el experimento 2, la temperatura máxima fue establecida a 30 °C (en las tres cámaras) y diferentes concentraciones de CO_2 (ambiental, 380; duplicado, 760; y triplicado, 1140 µmol mol⁻¹) fueron establecidas en ellas.

En ambos experimentos 30 plántulas (de 40 días después de la siembra) fueron ubicadas por cámara.

Las características analizadas de flor y fruto respondieron de forma negativa al incremento en las temperaturas máximas. Sin embargo, el tamaño de fruto, el rendimiento y los frutos por planta se incrementaron por la disponibilidad de CO₂.

	Experimento 1 Temperatura Máxima (°C)			Experimento 2 Concentración de CO ₂ (μmol mol ⁻¹)		
	30	35	40	380	760	1140
Longitud de fruto (mm)	25.0 <u>+</u> 0.93	22.0 <u>+</u> 1.21	24.8 <u>+</u> 1.41	30.1 <u>+</u> 0.61b	31.1 <u>+</u> 0.62b	34.0 <u>+</u> 0.65 a
Ancho de fruto (mm)	20.1 <u>+</u> 0.69ab	23.1 <u>+</u> 1.73a	17.2 <u>+</u> 1.69b	25.4 <u>+</u> 0.73b	27.0 <u>+</u> 0.50ab	29.2 <u>+</u> 0.46a
Grosor de Pericarpo (mm)	1.7 <u>+</u> 0.07a	1.4 <u>+</u> 0.06ab	1.3 <u>+</u> 0.05b	2.1 <u>+</u> 0.080b	2.1 <u>+</u> 0.046b	2.4 <u>+</u> 0.095a
Semillas fruto-1 (n)	19.8 <u>+</u> 3.1	15.2 <u>+</u> 1.52	17.1 <u>+</u> 2.37	25.2 <u>+</u> 2.35b	28.9 <u>+</u> 1.64b	40.6 <u>+</u> 3.4a

Letras diferentes en la misma línea representan diferencias estadísticas (Tukey, α = 0.05). n = 100.

Concentración de CO ₂	Producción	Rendimiento	
(μmol mol ⁻¹)	(frutos planta ⁻¹)	(g planta ⁻¹)	
380	61 ± 14 b	280 ± 65 c	
760	94 ± 12ab	454 ± 57 b	
1140	115 ± 12a	677 ± 69a	

Letras diferentes en la misma columna representan diferencias estadísticas (Tukey, α = 0.05). n = 25.

El contenido total de capsaicina de los chiles en atmósferas duplicadas y triplicadas de CO₂ fueron 20 y 60 % respectivamente más altos que en condiciones ambientales.

Concentración de CO ₂	Inmadui	ros	Maduros		
(μmol mol ⁻¹)	mg g ⁻¹ PS	SHU	mg g ⁻¹ PS	SHU	
380	15.17±0.67ab	227550ab	12.54±0.40b	188100b	
760	15.88±1.03a	238200a	15.90±0.65a	238500a	
1140	13.35±0.53b	200250b	14.40±0.46a	216000a	

Letras diferentes en la misma columna representan diferencias estadísticas (Tukey, α = 0.05). n = 100. PS = peso seco, SHU = unidades Scoville (picor).

